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Approximations for shallow-water ship waves are sought which are valid near 
the critical speed U = (gh)*. For sufficiently thin bodies (struts or ships) the 
governing equation is dispersive. Simple analytic solutions are given which 
are valid for all F2 < O( 1) .  As the thickness increases, nonlinearity also enters. 
A soliton solution is discussed which applies to a sharp-nosed half-body a t  
slightly supercritical speed. 

1. Introduction 
With increasing ocean traffic, ship hydrodynamics in shallow water is now an 

important practical subject. Apart from wave resistance in the direction of the 
ship’s longitudinal axis, lateral forces and moments are affected by the proximity 
of the sea bottom. While ships are usually designed for certain cruising speeds 
in deep water, knowledge of these forces is important for safe operations in coastal 
waters or rivers. Considerable theoretical work exists which omits real-fluid 
effects and is limited to thin or slender ships. For a thin ship with a symmetrical 
hull and zero angle of attack, Sretenskii (1936) has extended Michell’s linearized 
theory for an infinite ocean (1898) to rectangular canals of arbitrary finite depth 
and width. Numerical computation from the Michell-Sretenskii theory is tedious 
and difficult; only in 1966 did Kirsch publish comprehensive results on wave 
resistance. From her work it is clear that, as the sea depth decreases, the wave 
drag reaches apeak value a t  a subcritical speed F = U(gh)-i < 1, where U is the 
ship speed and h the sea depth. As h decreases further the peak sharpens but 
remains h i t e  and shifts towards the critical speed. Thus the neighbourhood of 
the critical speed should be of considerable theoretical interest and also of 
practical significance for high-speed boats. A more direct shallow-water approxi- 
mation based on linearized theory (also due to Michell) is available for a thin strut 
and was shown by Tuck (1966) to be almost directly applicable in the far field of 
a symmetrical slender ship moving along its longitudinal axis. This approxima- 
tion gives reasonable results for Froude numbers not close to unity but is singular 
and therefore invalid near F = I .  It is desirable to find a remedy for this defect 
since a direct shallow-water approximation should be much more convenient than 
taking the limit of a theory for arbitrary depth. A useful first step has been under- 
taken by Lea & Feldman (1972), who modified Tuck’s perturbation analysis for 
the neighbourhood of F2 = 1 and obtained the transonic equation in aero- 
dynamics. By numerical means they calculated the sinkage and trim, which were 
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related to the vertical force and the pitching moment, and obtained finite and 
continuous results near F = 1. No results on the wave drag were given. Their 
theory points out the importance of nonlinear effects, which should be included 
for many types of ships in practice. However, it  leaves open the theoretical 
questions whether by accounting for dispersion the linearized shallow-water 
theory can be made to give a finite limit near F = 1 as does the linearized 
arbitrary-depth theory, and if so what the conditions are for dispersion to be 
more (or less) important than nonlinearity. 

It is well known for stationary shallow water that a long-wave theory which 
accounts for both nonlinearity and dispersion has the widest range of validity. 
By applying a Galilean transformation to the Boussinesq equations, Karpman 
(1967) obtained such equations for ship waves. His attention was focused still on 
F2 > 1 with F2- 1 = O(l ) ,  for which he reduced the governing equation to that 
of Korteweg & de Vries (KdV). 

In  this paper we also start with the Boussinesq equations in a moving co- 
ordinate system, but study more comprehensively several possible approximate 
regimes. In  general, the form of the approximate equation and the extent of its 
spatial region of uniform validity will be found to depend on the Froude number 
and the thickness of the strut. We first focus on the neighbourhood of the critical 
speed F2 = 1. Denoting by B and L the maximum beam and length of the strut 
and assuming that 

we shall find that a very general equation satisfied by the depth-averaged 
potential is, in physical variables, 

B/L,  h/L < 1, (1-1) 

For a very thin strut, B/h < (h/L)2, the nonlinear (third) term is negligible and 
the governing linear equation is that of Rayleigh for the lateral vibration of a 
beam under an axial load (F2 > 1 for axial tension and F2 < I for axial com- 
pression). For a rather thick strut, B/h B (h/L)2, the dispersive (fourth) term is 
negligible and the equation reduces to that of transonic gas flow. For 
B/h = O(h/L)a, however, both nonlinearity and dispersion are important. Despite 
the premise of F2 z 1, it is clear that, if F 2 -  1 = O ( l ) ,  (1.2) is dominated by the 
first two terms, i.e. Michell’s approximation 

(J- -2)#xx+#yy 2 0 (1.3) 

holds. Thus (1.2) is in fact uniformly valid for all F2 < O(1) to leading order as 
long as (1.1) is satisfied. In  the remainder of this paper exact solutions will be 
obtained for the linearized regime, for which very simple results on wave forces 
will be given for a strut with thickness or at an angle of attack. Evidence of 
uniformity for all F2 will be pointed out. For the fully nonlinear dispersive 
equation a soliton solution will also be discussed.t Most of these results can be 

t For Pz > 1, (1.2) is the same as the continuum model of the Fermi-Pasta-Ulsm 
equation for lattice vibrations. 
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easily reinterpreted for a thin ship with a draft less than the water depth. The 
purely nonlinear and practically important regime, being essentially the same 
as transonic aerodynamics, will not be discussed here. 

2. Shallow-water approximations and the associated strut thickness 
We begin with the exact equations for the inviscid irrotational flow and sketch 

a direct derivation of the approximate equations. Let $* be the disturbance 
potential, <* be the free-surface displacement, (x*, y*, z*) be rectilinear 
co-ordinates with z* vertical, and h the uniform still water depth. Let a be the 
characteristic wave amplitude, which will be later related to the slenderness of 
the strut, and introduce the following normalized variables: 

1;" = ac, $* = (gaL/U)$, X* = Lx, ZJ" = Ly, Z* = hz. (2.1) 

The exact governing equations are 

$sn + P2(#,  + $,%1 = 0 for - 1 < < E Y ( X ,  Y),  ( 2 . 2 ~ )  

(2.2b) 
a t  z = ec, 

(2.2 c) 

(2.2d) $ , = O  a t  z = - i ,  

where e = a/h and p = h/L are both small numbers. Note that the scale for $* is 
so chosen that the linear terms in (2.2 b, c) are of leading order. Introducing the 
same expansion as Rayleigh, 

2! 

I P2P2(8+ #A + &e[P3(4: + $;) +$fl = 0 
$e = P2(P2 + € $ X I  c2 + W 2 $ U  CU 

(2.3) 
P2 P4 $ = $0 - - ( Z  + l)'A$O + 3 ( Z  + 1)4AA$o + . . ., 

which satisfies (2.2a,d) exactly, where A = a:+a;, we obtain the following 
approximations by including the leading-order terms, O(s) and O(p2) : 

6+ $02 iP2A$02 - (e/2P2) ($& + &I/), (2.4) 

(2.5) p2c2 + 4 0  - 4 A $ o  - 4 $ 0 2  Q + $ol/ C,) + &P2AA$o* 

The terms omitted are O(s2, q u 2 ,  p4). To the same accuracy c may be eliminated 
from the above, resulting in 

A$o - F2#0, - er&($;, + $QX + v. ($02 V$O)l+ P2[BP2A$02, - QAA401 *z 0, 
(2.6) 

which has been obtained by Karpman (1967), who applied a Galilean trans- 
formation to the Boussinesq equations for waves in stationary shallow water. 
It is possible to replace #o by the depth-averaged potential $ defined by 

From (2.3) we obtain 
- 
$ = $o-+p2A$o+ ..., (2.8) 

47-2 
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with which (2 .6)  may be rewritten as 

A$ - F2$,, - E[&($: + $.), + V . ($zV$)] + +p2F2A$,. 0. (2 .9)  

Equations (2 .6)  and (2 .9)  are valid for all F2 = O ( 1 ) .  For supercritical speeds with 
F 2 -  1 = O(1) Karpman (1967) has shown that, for 8 = O(p2), one can get a 
uniformly valid approximation for O(y) = O(,U-~), y > 0, by letting 

v = X - ( F ~ - I ) * Y ,  7 =p2y,  U ( V , T )  = #om (2 .10)  

which reduces (2 .6)  to the KdV equation 

(2.11) 

A similar equation can be obtained for y < 0. 
What is the order of magnitude of a for a given body? This must be found from 

the boundary condition on the hull. Consider first a strut with zero angle of 
attack. In  dimensionless form, the boundary condition on the body is 

where Y* 3 BY,  or alternatively, 

(2 .12)  

(2 .13)  

Consider e 2 O(p2). For (2 .9)  to be valid for (x, y) = 0(1) we require from (2 .12)  
that 

(2.14) 

For P2 not too close to 1 ,  Michell's approximation of keeping the first two terms 
in (2 .6)  or (2 .9 )  is correct to leading order. In  the second approximation one must 
account for nonlinearity if B/h > O(h/L), for dispersion if B/h < O(h/L) and for 
both if B/h = O ( h / L ) .  Consider E = O(p2) again. For (2.11) to hold for x = O ( 1 )  
and y = O( ,U-~)  we require from (2 .13)  that 

B 3 B l  
h -- €P = o ( I )  or -=o(;) h , (2 .15)  

which implies a very thin strut. Karpman appears to be in error in stating that 
B/h 9 1 instead. For this problem the boundary condition (2 .13)  leads to an 
initial condition for u on 7 = 0 and the inverse scattering method can be applied 
in principle for the exact solution. In  practice numerical techniques may be more 
straightforward and will not be discussed here. 

As was shown by Tuck, to leading order the boundary-value problem for a strut 
is equivalent to the outer problem for a slender ship with draft less than h, as long 
as one replaces Y*(x*)  by S*(x*)/Zh, where S*(x*) is the cross-sectional area of 
the ship. Furthermore, the pressure on the ship's hull is essentially the pressure 
of the outer solution measured at y = 0. Thus the strut solution may be used to 
give all the important results for a slender ship with only minor modifications. 
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More important modifications are, however, needed for a yawed ship with a keel 
very close to the bottom (Newman 1969). 

We now turn to near-critical speeds. 

3. Approximate equations near the critical speed F 2  = 1 

Beginning with (2.9), whichis valid for all F2 = O(l ) ,  and the boundary condi- 
tion (2.13), we consider three cases: (1) E > O(p2), (2) E < O(p2) and (3) E = O(pz) .  

Case I. Large amplitude waves or a ‘thick’ strut: E > O(p2) 

As is well known in transonic gasdynamics, it is necessary to keep the term &, 
in (2.9) for uniform validity. Thus we introduce 

q1 = Eay. (3 .1)  

This means that near the critical speed transverse variations become appreciable 
only far away from the hull. If  we also let 

F2-  I = &t;e with a2, = O(1) ( 3 4  

#7,?/1- (*a; + 3#x) #xx = 0(P2/+ 

$7, 7, - 3$x $xx = 0, 

equation (2.9) becomes 
- - -  

(3.3) 

Defining $ = ia2,x + $, the above equation becomes 

(3 .4)  

which is identical to the transonic equation and has been derived by Lea & 
Feldman (1972). Changing y to ql in (2.12) we obtain 

- B P  B 
= h - ( F 2 + ~ $ x )  Y,“ on ql = - p d Y * ( z ) .  

€3 h 

Since $71 must be O( 1) we assume without Ioss of generality that 

:$ = 1, which defines E = - = - . ; (:)# 

(3.5) 

(3 .6a,  b) 

The approximate boundary condition on the hull is 
- 
#71 = F2Y: on ql = s2Y*(x) r & 0. (3.7) 

Since E % p2, it  follows from (3.6 a )  that the strut must be relatively thick with 
B/h $ p2 = (h/L)2. For example E = O(p3) implies B/h = O(l) ,  which is a very 
practical range for many types of ships such as aircraft carriers and passenger and 
cargo ships which can attain near-critical speeds. Much that is known in transonic 
aerodynamics should therefore be applicable to ships. Proper caution is needed 
however when there are regions of rapid variations in the solution, so that L is no 
longer the suitable scale of horizontal length. 
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Case 2. Injnitesimal amplitudes or a thin strut: E < p2 

For the same reason as that behind (3.1), we must introduce 

7 =ICY (3.8) 

F2- 1 = Qu2p2 with u = O(1) (3.9) 

to preserve the term $uu in (2.9). Letting 

one gets from (2.9) that 
- 

+ Q( - a2$xx + $xxxx) = O(eh2) .  (3.10) 

Substituting (3.8) and (3.9) into the boundary condition (2.12), we may now take 

B/h = E ,  implying a = B. (3.11) 

The boundary condition can now be approximated by 

$ , = F 2 Y :  on 7 = t-0. (3.12) 

The condition e < p2implies that B/h < (h/L)2; the hull must be very thin indeed. 
Equation (3.10) also governs the lateral vibration of an elastic beam under an 
axial load (compression for u2 < 0 and tension for u2 > 0 ) ;  the term $xzz, repre- 
sents the effect of dispersion. Its simple form now permits a thorough analytical 
study which is very cumbersome according to Michell-Sretenskii theory for 
arbitrary depth for a thin ship at zero angle of attack, and quite impossible for 
a yawed ship. We remark that Michell-Sretenskii theory is also based on linear- 
ized conditions on the free surface and on the hull as in (3.12). Hence its limit for 
shallow water near P2 = 1 should coincide with (3.10) and be subject to the same 
restriction on hull thickness. 

Case 3. Medium amplitude: e = O(p2) 

Equations (3.8), (3.9) and (3.11) still apply but the approximate equation is now 

The implied hull thickness is such that 

B/h = O[(h/L)']. 

(3.13) 

(3.14) 

Now (3.13) contains the dispersion term of (3.10) and the nonlinear term of 
(3.3). Hence it is the most general, and (3.14) may be taken to mean more liberally 
that BL2/h3 is arbitrary. Furthermore its generality exceeds the neighbourhood 
of P2 = 1; by letting a+co such that up becomes 0(1) ,  both the nonlinear and 
the dispersive terms become unimportant, so that Michell's approximation 
suffices in the region (x, y) = O(1) to leading order. 

In  summary, (3.13) is uniformly valid for all P2 < O(1) with the following 
qualifications. Away from F2 = 1 it  reduces to Michell's equation for B / h  9 (h/L)2 
and (x, y) = O( 1). Near the critical speed it reduces to Rayleigh's beam equation 
for B/h  < (h/L)2, x = O(1) and y = O(pu-l) and to the transonic equation if 
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B/h $ (h/L)2, x = O( 1 )  and y = O(E-*). We further speculate that even in the last 
category dispersion may need to be considered whenever nonlinearity is strong 
enough to produce steep gradients anywhere. In  comparison with the original 
equation (2.9), (3 .13)  is much simpler and should be easier for numerical com- 
putations. 

Finally, we must impose the boundary condition that there is no disturbance 
far upstream. We now turn to some explicit solutions. 

4. Thin strut or ship at zero angle of attack 
We consider (3 .10)  with the boundary condition on a symmetrical strut: 

Furthermore there should be no disturbance at x N -co. The boundary-value 
problem can be easily solved by exponential Fourier transformation. We give 
only the results for gZ, which is directly related to the free-surface height and the 
pressure. 

For supercritical speeds F2 3 1 or a2 B 0 we have 

- 3t - Fz 
$ J X ,  7) = - -2 dk exp { i [ k x  - Icy( k2 + a2)4/3*]),  ( 4 . 2 )  

47l (k2+a2)* 

wheref(k) denotes the Fourier transform of f ( x ) .  This solution holds for the side 
7 > 0; that for the side 7 < 0 can be inferred by symmetry. The square root 
(k2+a2)6  is defined in the complex k plane with two branch cuts along the 
imaginary axis from ia to ico and from - ia to - ico. The branch is so chosen that 
(k2+u2)* is positive for all real k ,  which ensures that there is no disturbance far 
upstream. 

For subcritical speeds F2 6 1 or a2 = -/32 6 0 the solution is 

exp { [ ikx  - I kl 7(P2 - k2)4/3*]} 
- 36 $,Jx, 7) = - P2 

471 
- 4 e x p { i k [ r - 7 ( k 2 - ~ 2 ) t / 3 1 1 ) ) .  (4 .3 )  +(/I: + / : ) d k ( k 2 - i  ) 

The square root (k2-P2)* is defined in the complex k plane with two cuts parallel 
to the imaginary axis, one from p to p+ico and one from -p  to -p- ico. The 
branch is so chosen that (k2--P2)h > 0 for k real and jkl > /3. Note that at the 
critical speed a = P = 0 ;  (4 .2 )  and ( 4 . 3 )  agree since ( k z + a 2 ) *  and (k2 -P2)4  
become [ k l .  

Many aspects such as wave patterns can be studied from the simple solution 
(4 .2)  and (4 .3 ) .  We shall however limit our attention to the wave forces. 

General formulae for  forces on a thin strut or a thin ship 

The hydrodynamic pressure on the hull is simply given by 

p* g -pUc$$((x*, o ) ,  or p = -$z(x, O ) ,  (4.4) 

with p = p*/pgB. Use has been made of (3 .11) ,  which implies that B is also the 
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characteristic wave amplitude. The total drag on the hull is 

R* = (pgB2h) R,  where R = - 2 [" 3, Y'dx (strut). (4.5) 
J - a  

As mentioned before, the pressure as given by (4.4) applies also near a ship with 
its keel above the sea bottom. If the cross-sectional area of the ship is 
S*(x*) = S,S(x) we can replace 2Y by 8 and B by 8,/h to obtain the drag 

Following the argument of Tuck, the vertical force is 

z* = ( p g P L ) Z ,  - $x b dx (ship), (4.7) 

where b = B*(x*)/B is the dimensionless beam, and the trim moment about the 
y axis is 

M j  = (pgB2L2)My, N, = -/:w xb$,dx (ship). (4.8) 

For more explicit formulae for a ship we use (4.2) and (4.3) to obtain 

For supercritical speeds, since 

it follows by the convolution theorem that 

The limit of critical speed a + 0 is easily obtained by using 

Ko(a lx -q )  z -lnaIx-EJ. 

Assuming S = 0 a t  two ends of the ship we get 

(4.10) 

which resembles the K&rm&n formula for supersonic drag on a slender body, 
where S' is replaced by S". 
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For subcritical speeds 
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Since it is always possible to split X’(x)  into two parts which are even and odd 
in x ,  we may write f l X  = 8: + ifl;, where f7; is even and f l ;  odd in k .  It follows that 
l f l x 1 2  is always even in k .  Thus the first integral above vanishes and 

In changing from the second to the third integral, we have dropped a term whose 
integrand contains a factor sin k ( z  - E), which is odd about the line x = 5 in the 
x ,  5 plane. Finally, the k integral can be evaluated to give 

(4.11) R = - P 2 T / / - 4 d x d ( S ’ ( x )  34 4 S’(()  Yo(p lx-51),  P2 < 1. 

Note that the limit of critical speed (4.10) may be recovered by replacing Yo with 
(2/n)ln (p )z -51) for small p. This is evidence that the curve of wave drag vs. F 
is continuous at P = 1. 

Similarly, the vertical lift and trim moments are easily obtained: 

P2 < 1, = -B2 < 0, (4.13) 
where Ho(z) is the Struve function. 

I n  order to give further credence to the earlier claim of uniform validity for 
all P2 < O ( l ) ,  we wish to show that (4.9) reduces to Michell’s drag formula for 
high supercritical speeds a + co, and that (4.1 I )  reduces to zero for low subcritical 
speeds /3 + 00. 

Introducing x-t-5 =p,  x - (  = v ,  (4.14) 
we may rewrite (4.9) as 
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Since KO decays exponentially for large argument, the largest contribution to 
the u integral comes from v M 0; we approximate 8’ by S‘(&) and approximate 
the remaining v integral by noting that 

I n  
a 2’ dvKo(av) = - - 

Thus to first order we get by using (3.9) that 

;I- hF2 s dx[S’(x)]2, F2-I  > 0, 
2L(P2-1)4 -4 R(a) z (4.15) 

which is precisely Michell’s formula. 

use of 
For low subcritical speeds P-+co. Similar transformations via (4.14) and the 

/ow Yo(v) dv = 0 

lead to the well-known approximation 

R(P) g 0, F2 < 1.  (4.16) 

Similarly, Tuck’s formulae for 2 and M when P2 is not close to 1 are limiting 
cases of (4.12) and (4.13). 

Wave drag for a parabolic ship 

In  order to make a comparison with the numerical results of Kirsch, we choose 
the same ship, with a rectangular cross-section of dmft T and parabolic beam 

Y* = &B[l - (2x*/L)2]. 

Thus S* = BhS(x), where S = (T /h)  (1  - 4x2). (4.17) 

To evaluate the integrals in (4.9), (4.10) or (4.11), we may use (4.14) and get 

~ T ( Q - T + + T ~ ) K ~ ( ~ T ) ,  a2 >, 0, supercritical, (4.18) 

R(P) = - F2 8 x 3: dv($ -T+ $ T ~ )  YO(/%), a2 = -P2 < 0, subcritical. 

(4.19) 
In  particular, a t  the critical speed either formula above gives 

2 x 3 9  T 2 
R(O) = 7 (x) , R*(O) = pgB2h (4.20) 

Among the figures for many size ratios plotted by Kirsch, her figure 3, which is 
for L/h = 15, BIT = 3 and h/T = 2, is relevant for shallow water and is chosen 
for comparison. In figure 1 we present the results computed from (4.18) and 
(4.19), which can be expressed in terms of tabulated functions. Kirsch‘s results 
by a much more elaborate computation are indistinguishable from ours except 
for high supercritical Froude numbers. We note that on this plot of R 0s. P the 
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0.5 1 .o 1.5 3.0 2.5 

F = U/(gh)* 

FIGURE 1. Wave drag. -, present theory; - - - , Kirsch. 

maximum drag occurs for a Froude number slightly less than unity ( F  r 0.996 

or p 2-20). This has been checked by formally expanding 

(4.21) 

for ‘ small’ p and then equating it to zero. Indeed from the general formula (4.11) 
the same qualitative result can be obtained. 

Ship of minimum wave drag 

Knowing that in general the maximum drag occurs approximately a t  the critical 
speed, let us search for the optimum profile a t  F2 = 1 with the constraint that the 
total volume is fixed, the length being already fixed by normalization. 
Extremizing R(0) from (4.10) with the constraint that 

S d x  = V = V*/BhL = constant, 
f 4  

we obtain the EuIer equation 

(4.22) 

where h is the Lagrange multiplier. The integral equation can be solved to give 

s = 4h[(4)2--22]+. 
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Invoking (4.22) we find h = (16/n) V, so that 

X ( X )  = (8V/n)  [ (4)2-~2]*.  (4.23) 

Thus the optimal cross-sectional shape is an ellipse, in contrast to a parabola for 
high supercritical speeds (Zhukovskii; see Kostyukov 1968, p. 345). Substituting 
(4.23) into (4.10) we find the minimum drag at the critical speed to be 

R,(O) = 4 x 34n-1V2. (4.24) 

For il ship of constant draft T and elliptic planform with maximum beam Be 
the volume is V* = tnB,TL, or V = tnT/h, so that 

R;(O) = pgBf(TZ/h) (in x 3t). 

As a check and comparison, we note that a parabolic ship [cf. (4.17)] with equal 
draft, length and volume must have the beam equal t o  $nB,. It follows from 
(4.18) that the wave drag is $Rz(O). 

5. Slightly yawed plate of zero thickness at critical speed 
Consider a thin plate tilted counterclockwise with respect to the oncoming 

stream a t  a small angle 6. The characteristic beam scale B may be taken as 6L. 
In  dimensionless variables the governing equation (3.10) must be supplemented 
by the boundary condition that $7 = 1 on 7 = 5 0. By symmetry $ must be odd 
in 7, so that it is zero for 7 = 0,IxI > 4 and discontinuous, $(x, 0 + ) = - $(x, 0 - ), 
for 1x1 < 4. Again $ + O  as x-t-m. 

The corresponding problem has apparently not been solved analytically in the 
context of Michell’s thin-ship approximation for arbitrary h. It is a relatively 
simple exercise in the linear slender-body theory for shallow water for F not close 
to 1. We shall now give a linearized solution for P2 = 1. 

Taking the exponential Fourier transform and setting 
- 
5+, Of 1 = # 0 ( 4 ,  say, (6.1) 

we find the formal solution to be 

Applying the boundary condition on the upper side of the plate we have 

The last (Cauchy principal) integral is evaluated by noting that som sin k(x  - 6 )  dk = lim Im exp [ - ek + ik(x - 511 dk.  
€40 + 

(5.3) 
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Integrating twice with respect to x, we obtain 

which is the classical airfoil equation, C, and C2 being constants of integration. 
The solution is simply (see, for example, Tricomi 1957, pp. 173-180) 

(5.5) q50(x) = - [ (Q)2 - x21-B [+' x 3qQx - x3) + C,(Q - 9) - c, x + C,], 

where C, is also a constant. 
To determine the constants C,, C2 and C3 we require that q5, is finite at both 

ends x = f 8 and that aq5,/ax is finite a t  the trailing edge x = Q. These are reason- 
able conditions to be satisfied in Michell's approximation also. Finally, 

$hO(X) = 4 x  3q(+)2-x2]*(*-x), 1x1 < 3. (5.6) 

The pressure and the velocity on the upper side of the plate are therefore 

which has a square-root singularity a t  the leading edge and satisfies Kutta's con- 
dition at the trailing edge. Equations (5.6) and (5.7) show that the variations of 
q5,(z) andp(x, 0 f ) are the same as those on a classical plate airfoil in low subsonic 
flow. This is perhaps surprising because the governing equations are so different. 
The overall flow fields of the two cases, of course, bear little resemblance to each 
other. The total lift and moment about the origin are easily obtained: 

1 (5.8) 

33 337r 
16 16 N, = /;&dx (x2q5,J = -n, or M,* = -pgSL3. (5.9) 

The lift is negative while the moment is positive because the yaw is anticlockwise. 
The centre of force is at the quarter-chord point. 

The problem with F2 + 1 can be treated similarly. The integral equation is 
Cauchy-singular and can be reduced to a Fredholm integral equation which must 
be solved numerically or approximately. We forgo this analysis, which does not 
involve any difficulty in principle. 

Finally, the case a t  a thin plate (ship) with a draft less than h can be treated 
without difficulty in principle. If the clearance beneath the keel is O(h),  the cross- 
flow can be easily obtained as in usual aerodynamic problems. If the clearance 
is very small, Newman's analysis (1969) must be applied near the body. 

6. A soliton solution 

possible. Setting 
An exact solution to the full nonlinear and dispersive equation (3.13) is 

I$ = c2 = ( 3 2 -  1)/p2 (6.1) 3 
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and seeking a permanent-wave solution 

q5 = $(c) ,  where 5 = x- Ky, 

it  is easily found by standard arguments that 

C2 - K 2  $~.-@=---  sech2 {4[3(C2 - K2)]3 (x - K y ) }  (6.3) el@ 
provided that C2 > K2, for which it is necessary that the ambient speed is super- 
critical. We remark that the same solution can be obtained from (2.9) but is 
different from a similar solution to (2.11) by Karpman. 

To find the corresponding strut shape we apply the boundary condition 

$?(x, 0) = -K#&( = X) = K$(x) = Y'. (6.4) 

Integrating from - co to x we obtain 

Y = -  2K@ (C 2 -  K2)*{tanh&[3(C2--K2)]gx+ I), 
34 8 

which represents a half-body with an infinitely long sharp nose extending to 
x - -co and a constant thickness as X- +a. Since < E -#% = - $ I ( [ ) ,  the free 
surface forms two solitary humps stretching out symmetrically on each side of 
the body, with constant displacement along the lines of equal phase: 

- 

x & Ky = x & Kpy = constant, y 2 0. 

Now the value of K is determined by noting that L should represent the charac- 
teristic length of the solitary wave and B the total thickness (i.e. 2Y*(co)) of the 
strut. Thus we may require that C2 - K2 = I, 

so that 

and 

Consequently, we have 

and 

, Y'=-sech2-x 3t 34 
4 2 

sech2 (x - Kpy), y > 0. 
K 
2 

$ = -  3* 

The phase lines are nearly normal to the x axis for F2 g 1 and slant in the down- 
stream direction for increasing P2.  Upon substituting (6.5) into (6.6), K can 
be eliminated to give 

;; = Q [F"- I - (y]*. 
Thus, for a fixed Froude number, B and L must be related by (6.9) to give rise to 
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a solitary wave on each side of the body. In  particular, the smallest Froude 

(6.10) 
number is 

min F2 = 1 + (h/L)2,  

at which the half-body has no thickness. 
The dimensionless wave drag is 

m 
R = - 2  Y'dx = 2J-m +Y'dx = 

(6.11) 

Apart from its theoretical interest, the value of this exact solution is to provide 
a check for future numerical solutions for more realistic body shapes. Cnoidal 
wave and n-soliton solutions can also be obtained but they correspond to strut 
profiles of much less interest to ship hydrodynamics. 

This research has been financially supported by a grant from the U.S. National 
Science Foundation (ENG 74-02576). The author is indebted to his colleague 
Dick K. P. Yue for computing the curve in figure 1. 
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